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Setting expansion of gypsum-bonded 
investment in dental casting 
Part 1 Setting expansion under uniaxia/ stress 
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Department of Dental Materials, School of Dentistry, Hiroshimo University, 1-2-3, 
Kasumi-cho, Minami-ku, Hiroshima, 734 Japan 

The values of setting expansion of investment under uniaxial stress have been determined at 
condit ions designed to obtain the difference of setting expansion between that parallel to the 
loading direction and that perpendicular to the loading axis. The setting expansion curves 
were represented by 

a(t) = o0(1 - P/E') [1 - exp ( - k t ) ]  

along the loading direction and 

a(t) = a0(1 + v'P/E') [1 - exp ( - k t ) ]  

perpendicular to the loading direction, where a(t) is a setting expansion, a 0 = 0.009, v' = 0.2, 
E' = 5 kgcm 2, k -- 0.032min 1, p applied stress, and t the time (min). On the basis of these 
results, a method to estimate the value of setting expansion under restrictive force was devel- 
oped. According to this method, the setting expansion of the investment could be calculated 
by substituting O~/Ot for ~, koo exp ( -kt) /E'  for l /E,  v' for v, and ka o exp ( -kt )  for :~T in the 
theory of elasticity. 

1. I n t r o d u c t i o n  
There are several factors which affect the accuracy 
of dental metal casting. They are the distortion of 
impression materials, die materials, wax patterns, 
casting mould and shrinkage of metal occurring on 
solidification from melting point to room temperature 
[1-3], and the distortion of the casting mould made of 
investment, which is studied in this paper. 

In dental casting, setting expansion of investment is 
used to compensate for the shrinkage of the metal. 
The gypsum-bonded investment, which is composed 
of SiO 2 and CaSO 4 • 1/2H20 as the main constituents, 
expands when it sets after mixing with H20. As the 
investment sets within a stainless steel ring for rein- 
forcement, the investment expands freely along the 
longitudinal direction of the ring, but is restricted 
along the radial direction. This difference in the setting 
expansion between the two directions causes a distor- 
tion of the mould. Furthermore, invested wax patterns 
restrict the setting expansion of the investment and 
also cause distortion of the mould [2]. The amount of 
setting expansion also changes due to the measuring 
method used [4]. For example, the amount of setting 
expansion measured in a trough is smaller than that 
measured outside a trough due to a frictional force 
which acts on the surface of the investment. So 
the effect of  these restrictive forces on the setting 
expansion of the investment is an important prob- 
lem in dental casting. Some studies concerning 
setting expansion under constant load have already 

0022-2461/89 $03.00 + .12 © 1989 Chapman and Hall Ltd. 

been reported [4, 5]. However, it seems that the 
setting expansion behaviour under an applied load 
cannot be clarified sufficiently by a numerical method. 
The objectives of  this study were to measure setting 
expansions under some loading conditions and to 
clarify the method of numerical calculation of setting 
expansion. 

2. Mater ia ls  and methods 
The investment tested was a commercial gypsum- 
bonded cristobalite investment (G-C Co., Tokyo, 
Japan). The measurements were made in two direc- 
tions, that parallel and that perpendicular to the 
loading direction, and also for the case when applied 
stress increased with time. 

2.1. Setting expansion parallel to the loading 
direction 

Setting expansion under load was measured using a 
dial gauge with 1 #m resolution, as shown in Fig. 1. 
The investment was mixed at a water/powder ratio of 
0.32 with manual spatulation at 2 turns/see for 30 sec. 
The slurry was poured into a wax cylinder which was 
made of sheet wax 0.28 mm thick, 20 mm inner dia- 
meter, and 30 mm high, and glass plates were placed 
on the upper and lower surfaces. After mixing for 
12rain, the investment specimens for setting expan- 
sion were placed under the dial gauge. Setting expan- 
sion was then measured from 14 to 120min after the 
start of mixing at 20 + 2°C. Applied loads of 0, 5, 10 
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Figure 1 Measurement of setting expansion: (a) parallel the loading 
direction - a dial gauge was used in loading conditions and a strain 
gauge in the unloaded conditions; (b) perpendicular to the loading 
direction. 

and 16kg were used, and the applied stresses were 
calculated as load per unit area. 

For a setting expansion at 0kgcm -2 as a stress, 
the measurement was started using a strain gauge 
soon after the slurry was poured into the wax cylinder 
(Fig, 1), and the time of beginning of setting expansion 
at 0 kg cm 2 was also obtained. 

2.2. Setting expansion perpendicular to the 
loading direction 

At first, two Co-Cr  wires, 0.7 mm diameter, shown in 
Fig. 1, were placed at half the height of the wax 
cylinder. Then the investment slurry was poured into 
the wax cylinder, and the wires were fixed to the 
surface of the investment. After mixing for 12 min, the 
specimen was set and the displacements of wire edges 
were observed using microscopic micrometer. The 
applied stresses were 0 and 5.1 kgcm -2 in this case. 
Measurements were again made at 20 +_ 2 ° C. 

2.3. Setting expansion when applied stress 
increases with time 

In this case, the setting expansion only parallel to the 
loading direction was measured. Measurement was 
done as described in Section 2.1, at 20 _ 2 °C, but 
during the setting expansion, the applied stress was 
increased from 0 to 2.9 kgcm -2. 

3. Results and discussion 
The setting expansion curves obtained by the measure- 
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ments in Sections 2.1. and 2.2 are shown in Fig. 2. The 
curve parallel to the loading direction and that per- 
pendicular to the loading direction were almost the 
same at an applied stress P = 0kgcm -2. When the 
applied stress was increased from 0 to 5.1 kg cm 2, the 
amounts of setting expansion along the loading direc- 
tion were reduced, and the amount perpendicular to 
the loading direction increased. The time at the onset 
of setting expansion was about 14 rain 30 sec, and the 
start of setting expansion was delayed with increasing 
applied stress. The setting expansion curves obtained 
for increasing applied stress are shown in Fig. 3. The 
setting expansion was reduced when the applied stress 
was increased with time. The expansion curves in 
Fig. 2 could be represented by the following equation 

a(t) = apt1 - exp ( - k t ) ]  (1) 

where a(t) is the setting expansion at t, ap the final 
expansion at an applied stress P, t the time (rain), and 
k the constant which corresponds to the expansion rate. 
For the expansion curves in the unloaded condition, a 0 
(final expansion at P = 0) was determined to be 0.009 
in Fig. 2, and k was 0.032min -~, as the slope of a 
straight line, because In [1 - a(t)/ao] is - k t .  Both the 
calculated and measured curves resulted in good agree- 
ment as shown in Fig. 4. For the expansion curves 
parallel to the loading direction and perpendicular to 
the loading direction, equations could be obtained as 
follows. Considering the value of ap(30-120) which is a 
strain of expansion in the period from 30 to 120rain 
after a start of mixing, and under an applied stress of P, 
and the value ap = a 0, ao(30-120)/ae(30-120) (Table I), 
Fig. 5 shows that relations between the applied stress 
and a e may be represented by two straight lines 

ae = %(1 - P/E') 

along the loading direction 

ap = a0(1 + v'P/E') 

perpendicular to the loading direction, where P is an 
applied stress, E' is found to be 5.0 kg cm -2 from Fig. 5, 
and v' is 0.2 as the ratio of P/E' and v'P/E' (PIE' shows 
the reduction of expansion along the loading direction, 
and v'P/E' shows the increase along the direction per- 
pendicular to the loading direction). Thus, setting 
expansion curves under applied stress, P, could be 
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Figure 2 Setting expansion curves under constant load. 
(©, zx, o,  O) parallel, (e ,  *) perpendicular to the loading 
direction. 
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represented as 

a(t) = a0(l P / E ' )  [1 exp ( - k t ) ]  (2a) 

along the loading direction and 

a(t) = a0(l + v ' P / E ' ) [ 1  - exp ( -  kt)] (2b) 

perpendicular to the loading direction, where k has the 
same value of 0.032. 

Both the calculated and the measured curves resulted 
in good agreement perpendicular to the loading direc- 
tion as shown in Fig. 4. The calculated values of setting 
expansion were greater than the measured ones parallel 
to the loading direction in the early state of setting 
expansion, as shown in Fig. 4, but these changes with 
time agreed fairly well, except during the initial period. 
Furthermore, these differences would not affect the 
calculation under conditions where the applied stress 
was small during the initial period, as will be shown 
below. 

The expansion curves for changing applied stress 
were then examined. Fig. 6 shows the relationship 
between applied stress, P, and ratio, r/, of  setting expan- 
sion under loading conditions to that under unloading 
conditions for the duration for which the applied stress 
was P (Fig. 3). This relation is represented by straight 
line 

= (] - P / E ' )  (3) 

where U is found to be 5.0 from Fig. 5. From these 
results, the expansion curves were first calculated under 
the respective applied stress, according to Equation 2. 
Then parts of the calculated curves at applied stress, P, 

Figure 3 Setting expansion when the applied stress 
increases with time: ( - - - )  stress increase from 0 to 
2.9kgcm : ; (  ) m e a s u r e d ; ( - -  )calculated. The 
value of r/ at P = 1.6kgcm 2, for example, isn/m = 

0.58. 

,.a 
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were used for that portion in which the applied stress 
was P, and these parts were connected together. In 
Fig. 3, the calculated curve and the measured curve 
agreed fairly well. 

According to the small deformation theory [6], the 
relations between stress and strain of the investment are 
determined, and these equations can then be solved 
with both the equations of equilibrium (Equation A6) 
and conditions of compatibility (Equation AT) (see 
Appendix). 

We now discuss the case when the applied stress is 
considered to be constant. When only compressive 
stress c r  = - P  is acting, the relations between stress 
and strain are already known from Equations 2a and 
b. When compressive stresses o.~x, ~r~)., and o~. are 
acting, the relations are assumed to be 

~.,.~ = a0[1 - exp ( - k t ) ]  (1 + ¢~.,./E' - v'¢~.y/E' 

- v ' o . : /E ' )  (4a) 

~,, = a0[l -- exp ( - k t ) ]  (1 + a:: , , /E'  - v ' a : j E '  

- v'ax.,./E') (4b) 

% = ao[1 - exp ( - k t ) ]  (1 + d_:/U - v'o,.,./E' 

- v ' a x , / E ' )  (4c) 

In these equations, ¢ .... for example, consists of four 
terms 

(1) expansion at the unloading conditions: a0[1 - 
exp ( -  kt)] 

(2) reduction: ao[1 - exp ( - k t ) ]  ¢,..,./U 
(3) increase: - a o [ l  - exp ( - k t ) ]  v'ax~./U 
(4) increase: - ao[1 - exp ( -  kt)] v ' o : : / U .  

1.O 
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Figure 4 Representation of setting expansion curves by the 
equations a(t) = a0(l - P/E')[I - exp ( - k t ) ]  parallel 
to the loading direction, and a(t) = a0(l + v'P/E')[1 
exp ( - k l ) ]  perpendicular to the loading direction. (O, D, 
A) measured, ( ) calculated. 
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Figure 5 Relations between P and ap, which may be 
represented by two straight lines: ap = a 0 ( I -  PIE ' )  

parallel to the loading direction and a e = a0(1 + v ' P / E ' )  

perpendicular to the loading direction, where a 0 = 0.009, 
v' = 0.2, and E' = 5 k g c m  '-. 

T A B L E  I Values of  ae(30-120 ) and a e (the values in parentheses; s tandard deviations) 

Stress, P Direction of  Expansion ap(30-120) a e = 0.90 x ap(30-120)/0.50 
(kgcm -2) measurement  at 120min 

0 parallel 0.83 (0.05) x 10 2 0.48 (0.05) x 10 2 0.90 x 10 2 
0 perpendicular 0.88 (0.04) x 10 -2 0.51 (0.05) x 10-" 0.90 x 10 .2 
1.6 parallel 0.44 (0.05) x I0 2 0.30 (0.01) x l0 2 0.56 x 10 2 
2.9 parallel 0.28 (0.01) x 10 .2 0.22 (0.01) x 10 .2 0.41 x 10 2 
5.1 parallel 0.11 (0.03) x 10 .2 0.11 (0.03) x 10 -2 0.21 x 10 2 
5.1 perpendicular 1.04 (0.04) x 10 .2 0.58 (0.01) x 10 .2 1.04 x 10 .2 

These correspond to the relations for an elastic body 
shown by Equations A l a  to c. 

The relationships between shearing stress and shear- 
ing strain can also be obtained from the experimental 
results, and Equations A3, A4, and A5. When 
~x.~ = - P  is acting on AB and o-., r = P on BC, the 
shearing stress r = P is acting on KL in Fig. 7. Under 
these stress conditions, squares ABCD and K L M N  
deform into A 'B 'C 'D '  and K ' L ' M ' N ' ,  respectively. 
In this deformation, the angle change "/ = / - K L M  - 
/ K ' L ' M '  is caused by the shearing stress r = P, and 
7/2 is defined as the shearing strain. Finally, the rela- 
tionships between shearing stress and shearing strain 
becomes 

e~: = ao[1 - exp ( - k t ) ]  (1 + v')%,/E' (5a) 

~,: = ao[1 - exp ( - k t ) ]  (1 + v')z>./E" (5b) 

o 
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e:~ = a0[1 - exp ( - k t ) ]  (1 + v')r_,./U (5c) 

according to Equations A3, A4 and A5. Equations 4 
and 5 could be solved using Equations A6 and A7. 
However, these equations become Equations AI  and 
A2 by substituting 1/E for a0[1 - exp ( - k t ) ] / E ' ,  v for 
v' and c~T for a0[1 - exp ( - k t ) ] .  Thus the deforma- 
tion of investment could be determined by using the 
theory of elasticity in this case. 
Second, consider the case where an applied stress is 
dependent on time. The relations between stress and 
strain are obtained as follows. Equation 3 suggests 
that when ~x.,- = - P(t) varies continuously, the strain 
change between t and t + dt is 

d at... --- (1 + a~.,./E')kao exp ( - k t )  dt (6) 

where kao exp ( - k t )  dt is the expansion at an 

Figure 6 Relation between P and r /which may be represen- 
ted by the straight line r/ = (1 P / U )  where ~/is the ratio 
of  loaded one to unloaded expansion in Fig. 3. 
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Figure 7 Relations between stress and strain. 
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e,.,. - a0[l - exp ( -kt ) ]  (I + a,.~/E" - v ' % y / U )  

e.w = a0[1 - exp ( -kt ) ]  (1 + ~s~./E" - v ' v , x /E '  ) 

7/2 = %[1 - exp ( -kt ) ]  (1 + v ' ) r /E '  

where cr.;~ - -a;.~ = - P ,  and z = P. 

unloaded condition between t and t + dt in Fig. 8. 
Thus the relation between stress and strain could be 
represented as follows: 

(l) along the loading direction 

c3G,. 
- (1 + a,.,]E')kao exp ( - k t )  

8t 

(2) perpendicular to the loading direction 

0Gv 
- kao exp ( - k t )  (1 - ¢cr,.,_/E') 

8t 

Furthermore when a ...... %,, and or= are acting together, 
the relationships could also be represented by 

0G., 
- ka o exp ( - k t )  (1 + G.,./E' - v 'G) /E '  

8t 

- v ' a : : / E ' )  (7a) 

8~.~.; _ kao exp ( - k t )  (1 + G,./E' - v'cr=/E' & .- 

- v ' a . , . , ] E ' )  (7b) 

-- - ka o exp ( - k t )  (1 + cr_:/U - v'a,.~/E' 
8t 

- v ' a ~ / ' E ' )  (7c) 
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P, 
. 1  

0.5 

x 
U.I 

unloaded 

I C T o k . e x p ( - k f  ) d~ 

l o a d e d  

k • exp ( - k t )  dt  

I 

f f + d f  

T i m e  ( m i n  ) 

The relations between shearing stress and shearing 
strain are represented by 

- k a o e x p ( - k t ) [ 1  - e x p ( - k 0 ]  
8t 

x (1 + v')%,/E' 

8t = ka° exp ( - k t )  [1 - exp ( - k t ) ]  

(8a) 

OC~x 

8t 

x (1 + v')L,:/E' 

- kao exp ( - k t )  [1 - exp ( - k t ) ]  

(8b) 

x (1 + v'M_x/U (8c) 

These relations again become Equations A1 and A2 
by substituting e for &~St, 1/E for kao exp ( - k t ) / E ' ,  

v for v' and c~T for kao exp ( - k t ) .  Thus &(t)/Sv can be 
obtained by using the theory of elasticity, and the 
strain at t could be finally determined by integrating 

&(O 
8(0 = f ~ -  dt 

The method described in this study could be applied 
to a setting expansion under various conditions of  
restrictive force, and the setting behaviour would be 
expected to be simulated by this numerical method. 

A p p e n d i x  
According to the theory of elasticity the relations 
between stress and strain are defined as follows [7]. 

e ...... = [Gx - v(G,y + a=)]/E + ctT (Ala)  

c/.~ = [Gy - v (a= + Gx)]/E + ~T  (Alb)  

Z-= = [%: - v (o,-x + G ; ) ] / E  + ~T (AIc) 

Q = (1 + v) zx/ /E (A2a) 

e.,._. = (1 + v) r y j E  (A2b) 

Z-x = (1 + v) r_x/E (A2c) 

where E is the modulus of  elasticity, v a constant 
parameter  called Poisson's ratio, ~ the coefficient of  
thermal expansion, and T the temperature. Equations 
A l a  to c are relations between normal stress and 
normal strain. Normal  strain e ..... for example, consists 

Figure 8 Setting expansion curves when stress increases 
with time. 
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of four terms: (l) strain caused by G,  acting along the 
x-axis, a,..,./E; (2), (3)strains caused by a;; and %__ 
acting perpendicular to the x-axis, -vG.,./E and 
- vo.../E; and (4) the strain due to thermal expansion, 
0~T. 

Equations A2a to c show the relationships between 
shearing stress and shearing strain, and these are not 
affected by temperature, because thermal expansion 
does not produce angular distortion. Consider a 
deformation of square ABCD under loading con- 
ditions such that a.,.., = - P and %;, = P, Fig. 7. The 
normal stress on the side KL is zero, and the shearing 
stress on KL is 

r = (a.,.,,- G.,.)/2 = P (A3) 

Half the angle change between the sides KL and LM, 
7/2, corresponds to the shearing strain. Therefore, the 
following relation is obtained 

tan ~ - - (1 + ~,..,) (A4) 

On supposing that value of strain is small, the relation- 
ship is reduced to be 

?/2 = (1 + v) r/E (AS) 

Equations A6a to c are equations of equilibrium and 
Equations A7a to c are conditions of compatibility 

Oar x C3 "Q r C3 "Q. . 
8x + ~ + ~ + X = 0 (A6a) 

#a;,y O'Q.. OZv~ 
Oy + ~ + W + Y = 0 (A6b) 

C3o-= c3"r:, v 6q'c w 
+ ~-x + -v~ + Z = 0 (A6c) & vy 

_ ~3-G~, 2 82e''" C-c.. ~.. 
@& @2 + 8z 2 , 

02gx.~. 0 [ Ogr: 

8ySz - ax ~-87x  
+ ~C,. v 

E e,:., Ee, ..... Ea__ 
8zSx 8z 2 8x 2' 

E < ~ ,  _ 8 ( & , , .  Be-,. 

&By 8y \ 8x 8y 
+ 

~28v; 0q28~ 028x.~ 

8x@ 8x 2 + @2, 

82~:: 8 ( 8q.: &_, 

& O :  = a~ \ Ox + a~- 

where X, Y and Z are body forces. 

+ O z /  

(A7a) 

& / 

(A7b) 

~Sa3'~Z t 

(ATc) 
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